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We have developed a graph grammar and a graph-
grammar derivation system that, together, gener-
ate decision-theoretic models from unordered lists
of medical terms. The mredical tenrs represent
considerations in a dilemma that confronts the pa-
tient and the health-care provider. Our current
grammar ensures that several desirable structural
properties are maintained in all derived decision
models.

CONSTRUCTION OF MEDICAL DECISION
MODELS

In medicine, many important decisions must be
made from uncertain evidence. Studies have
shown that physicians are subject to erroneous bi-
ases when they make decisions based on such infor-
mation [1]. Decision analysis [2] provides a sound
framework-namely, probability theory-for com-
bining uncertain evidence to compute the likeli-
hood of various outcomes. Also, decision analy-
sis provides a basis for weighing explicit patient
preferences to derive an optimal plan from the
available alternatives. Decision-analytic models,
however, can be difficult to compose, and the few
models that have been published do not cover the
broad spectrum of problems that face physicians
every day. Consequently, widespread adoption of
normative decision making in medicine depends on
the development of improved support for decision
modeling.

Previously [3], we have proposed that graph gram-
mars might provide guidance for the automated
construction of decision models. In this paper, we
report on our implementation of a graph-grammar
derivation system, and on our current grammar
for medical decision models. The derivation sys-
tein accepts a list of considerations (tests, diseases,
etc.) and generates a model that includes those
considerations. We have found that our graph
grammar can1 structure medical decision models
that are moderately complex. The gramnmar can
also construict more complex models (i.e., models

with over a dozen considerations), but only with
help from the user.

QUALITATIVE CONTINGENT INFLUENCE
DIAGRAMS

In our research, we represent decision models as
qualitative contingent influence diagrams
(QCIDs). In this graphical representation, nodes
denote variables that are probabilistic (shown as
circles), deterministic (double circles), or coii-
trolled by the decision maker (squares). A util-
ity node (hexagon) represents the decision maker's
value function-a deterministic variable that we
wish to maximize by selecting the most propi-
tious decision-node alternatives. Arcs into a deci-
sion node delineate information known to the de-
cision maker at the time that the decision is made;
these information arcs are dashed. Arcs into ei-
ther probabilistic or deterministic nodes represent
probabilistic or functional dependence of the tar-
get variable on the source variable; these depen-
dency arcs are solid.

Specific probability values are not applicable to
all clinical situations, but certain constraints on
probability values generalize across cases. For ex-
ample, curative treatments have negative effects
on the probability of diseases. To describe mono-
tonic constraints on probabilistic and functional
dependencies, we use qualitative arc labels: A
"+" restricts the target node's distribution of val-
ues to vary in the same direction as changes in the
source node's distribution of values, and a "-"
restricts the source and target nodes to vary in
opposite directions.

GRAPH GRAMMARS

Graph grammars have undergone 20 years of the-
oretic development [4, 5]. A graph grammar con-
sists of several graph-grammar production rules,
which describe syntactic manipulations of a dia-
gram. The particular formalism that we use is
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Figure 1: Sample graph-grammar production rule.
The production describes how nodes of the type
<ablative tx> can be added to the host graph. VL,
VA, VB, and VR (left, above, below, and right) are
the four regions of a graph-grammar production
rule. In this rule, there are no vertices in VL. (tx
= treatment.)

a modification of the operational formalism de-
scribed by Gottler [6, 7]. In G6ttler's formalism,
a production can be written as a graph divided
into four regions (Figure 1): the left region (VL),
the right region (VR), the region below (VB), and
the region above (VA). The two regions VA and
VB are called the indeterminate and determi-
nate regionls, respectively, and they comprise the
embedding environment of a rule.

In our system, called Gramarye, a production
rule describes the following manipulation steps:

1. Locate all regions in the host diagram where
the nodes and arcs match the vertices and
edges of the determinate and left regions (Fig-
ure 2a).*

2. Match zero or more subgraphs in the indeter-
minate region to subgraphs in the host dia-
gram. Also match the edges between the in-
determinate and left regions to corresponding
arcs in the diagrami.t

3. Delete the nodes that matched VL, and delete
their incident arcs (Figure 2b).

4. Add new nodes and arcs that correspond to
the vertices and edges in the right region of
the production rule (Figure 2c).

*When VL and VB match multiple locations in the host
diagram, the derivation system elicits user assistance to
choose among the locations.

tWhen potential matches to VA exist, the user must
determine which nodes should be matched.

(a)

X{fr>~~~~~~z~~: /....

(C)

Figure 2: Sample application of the graph-
grammar rule from Figure 1. (a) The first view of
the host graph shows two nodes from the host di-
agram matching <utility> and <present disease>
in the production. (b) If VL contained vertices,
a matching set of nodes would be removed. (c)
Additional nodes Appendectomy and Future appen-
dicitis are added to the QCID model.
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Gramarye's derivation system invokes all applica-
ble rules as a group, where the application of each
rule adds to the diagram a node with a different la-
bel. The derivation system then removes terms-
corresponding to the nodes added-from the in-
put list of terims, and searches for all remaining
terms that can be added to the diagrani using the
graplh gramnmar. Currenitly, Gramnarye does not
provide aniy probability or utility values for the
miiodel; iinstead, it relies oin otlher tools for auto-
mated support of assessment, sensitivity analysis,
testing, and inference.

A GRAMMAR FOR MEDICAL DECISIONS

Our graph gramimar [7] describes prototypical pat-
terns for common clinical abstractions. We have
grouped the medical terms that our grammar rec-
ognizes inlto a node-label classification-a clas-
sificatioii tree with the capacity for genierating sim-
ple syintactic variants. Since maniy of the abstrac-
tions in the tree (e.g., <disease>) correspond to
abstractions used in the CPT, SNOMED-III, and
QMR, we have adopted portions of these standard
clinical vocabularies. The derivation system helps
the user to classify any input terms that are not
already in the node-label classification tree.

In Figure 3, we show Gramarye's derivation of a
QCID from a list of six considerations that a pe-
diatrician might have in decidiilg whether to test
or treat a 5-year-old child who hias appareIntly ex-
perienced febrile seizures. Because the determi-
inate regioins in our gramimar constrain wheni in
a derivation each rule can be applied, Gramarye
necessarily divides this derivation into four groups
of rule applications. The order of rule applications
withiin a group is not specified. In our grammar,
however, the order within a group has no effect on
the resulting graph.

Our grammar possesses the following properties
[8]:

1. The gramiimar will generate only acycic
graphs.

2. Oinly one derivation can result from a given
input (i.e., the gramnmar is unambiguous).

3. The grammar will not yield a qualitatively
dominated decision (i.e., all decisions in-
clude both pros and coIns).

Figure 3: A derivation produced by Gramarye.
The terms entered by the user are generalized
tonic-clonic seizures, history of generalized tonic-
clonic seizures, idiopathic epilepsy, EEG, phenobar-
bital, and CNS depression from phenobarbital. In
part (a), Gramarye triggers a rule from the gram-
mar to add idiopathic epilepsy. In (b), Gramarye
adds a finding and a malady complication to the
model. In (c), the addition of a treatment node
entails a future disease node. In (d), Gramiarye
adds a test and its result. (CNS = central nervous
system; EEG = electroencephalography.)
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4. Each generated model will contain exactly
one utility node.

5. In no generated model will there be successors
to the utility node.

6. For all nodes in all generated models, there
exists at least one relevance path (sequence
of solid arcs) to the utility node.

7. For all chance nodes in all generated models,
there exists at least one chance-node path to
the utility node.

Although these properties do Iiot guarantee that
the resulting model is appropriate, they do prevent
comimion modeling errors. For example, the third
property-no dominated decisions-accounts for
five of the nine rules used by Wellman and col-
leagues to critique manually composed decision
trees [9]. The other four critiquing rules in Well-
man's system are obviated by our adoption of the
influence diagram notation.

RESULTS

We have implemented Gramarye in Common Lisp.
We have also implemented a graphical user inter-
face in NeXTSTEP, wherein the user selects or
enters terms corresponding to considerations for a
given decision problem, and then views and may
edit the QCID that Gramarye generates automat-
ically. Our grammar-both the node-label clas-
sification and the production rules-has evolved
continuously over the past 6 months. Our deriva-
tion system has remained fairly stable. When
presented with training cases, Gramarye has pro-
duced models that are roughly equivalent (i.e.,
mathematically identical, once a single utility
function is assessed) to those developed by in-
dependent researchers. For example, other re-
searchers [10] have modeled a complex clinical de-
cision regarding coronary-artery bypass graft, ab-
dominal aortic aneurysm, cardiac catheterization,
and 14 other considerations for an elderly patient.
By entering the same list of considerations into
Gramarye, we can derive an equivalent qualita-
tive model in roughly 1 minute. Professional de-
cision analysts have found that the initial qualita-
tive modeling of a decision problem often requires
more effort than does the assessment of probabil-
ities and utilities for the model. Consequently,
our approach to modeling could make normative
decision making significantly more accessible to
health-care workers.

We have not yet had sufficient experience with our
system to warrant a more formal evaluation with
test cases. However, we have discovered five im-
portant problems with our approach:

1. Our vocabulary of roughly 6000 terms is small
when compared to the variety of words used
to denote considerations involved in general
internal medicine. However, nonmedical con-
siderations often play an important role in
clinical decisions. Users of our system will
need support in classifying these considera-
tions according to abstractions in the node-
label tree.

2. Although most terms that we have considered
fall under a single classification in our node-
label tree, some terms have more than one
role, depending on the context of the decision
problem. For example, an excisional biopsy
may be considered as both a <test> and as
a potential <treatment> for a small skin le-
sion. Currently, when an entered term ap
pears in multiple places in the classification
tree, the derivation system requires the user
to choose among the possible roles for that
term. Concepts-such as excisional biopsy-
that present features of more than one ab-
straction in a single decision problem may re-
quire new abstractions and new productions
in our grammar.

3. As exceptions to our existing patterns arise,
the grammar continues to evolve. Establish-
ing that the seven properties discussed in this
paper hold for each new grammar can be te-
dious. Because the properties are neither ob-
vious nor easy to prove, we are working to de-
vise a framework-much like the parse tables
used in context-free grammars-that would
enable us to evaluate automatically a gram-
mar for such properties.

4. As we relax assumptions that are inherent in
the current grammar (e.g., that each treat-
ment is administered for a single disease),
Gramarye's requirement for user assistance
grows, and the guidance provided by static
models of the domain becomes increasingly
desirable. By introducing purely semantic
distinctions (e.g., dividing respiratory find-
ings, diseases, and tests from other findings,
diseases, and tests), we can reduce the non-
determinism that results when Gramarye can
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add the same node at multiple locations. Un-
fortunately, most findings and diseases are
difficult to partition into neat categories.

5. The current grammar cannot construct intri-
cate chance-node subgraphs that reflect phys-
iologic understanding. Because of this short-
coining, we have begun to use static belief-
network models of human pathophysiology to
guide the derivation process. We have not yet
had sufficienit experience with this knowledge-
base supplementation of the grammar to es-
timate its benefit. The oinly alterinative that
we see to providing static models of physio-
logic relationships is imbedding such medical
knowledge into the grammiar, and we suspect
that such a grammar would become unman-
ageable. Chance-node abstractions for physi-
ologic parameters will probably emerge as our
grammar evolves, but we have yet to see how
such abstractions will augment the grammar's
modelinig power.

Additionial graplh-grammar productions may help
the user to decide how to simplify the value func-
tion when the generated model contains numerous
arcs into the utility node. Assumptions of causal
independence would greatly simplify probability
assessment for nodes with many parents, but we
have not yet found general patterns of causal in-
dependence that we could embed in the grammar.

DISCUSSION

By generating QCIDs from lists of considerations,
Gramarye has shown that graphi grammars cani
help physicians to model decision problems. Such
models provide a basis for balancing patient pref-
erences, individual features of a clinical case, and
statistical data from the literature to arrive at
a sound, responsive, and cost-effective decision.
The strength of our approach lies in our ability to
change a constructive task-where the user must
decide to include or omit in her model each of an
exponential number of possible relationships-to
a classification task, which grows linearly with the
niumber of considerations (terms) to be included
in the model.
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